Asymptotics for $M$-Estimators Defined by Convex Minimization

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scaling Algorithms for M - convex Function Minimization

M-convex functions have various desirable properties as convexity in discrete optimization. We can find a global minimum of an M-convex function by a greedy algorithm, i.e., so-called descent algorithms work for the minimization. In this paper, we apply a scaling technique to a greedy algorithm and propose an efficient algorithm for the minimization of an M-convex function. Computational result...

متن کامل

Minimization of an M-convex Function

We study the minimization of an M-convex function introduced by Murota. It is shown that any vector in the domain can be easily separated from a minimizer of the function. Based on this property, we develop a polynomial time algorithm.

متن کامل

Asymptotics for Lasso - Type Estimators

We consider the asymptotic behavior of regression estimators that minimize the residual sum of squares plus a penalty proportional to ∑ βj γ for some γ > 0. These estimators include the Lasso as a special case when γ = 1. Under appropriate conditions, we show that the limiting distributions can have positive probability mass at 0 when the true value of the parameter is 0. We also consider asymp...

متن کامل

M-estimators as GMM for Stable Laws Discretizations

This paper is devoted to "Some Discrete Distributions Generated by Standard Stable Densities" (in short, Discrete Stable Densities). The large-sample properties of M-estimators as obtained by the "Generalized Method of Moments" (GMM) are discussed for such distributions. Some corollaries are proposed. Moreover, using the respective results we demonstrate the large-sample pro...

متن کامل

Higher order asymptotics for the MSE of M-estimators on shrinking neighborhoods

In the setup of shrinking neighborhoods about an ideal central model, Rieder (1994) determines the as. linear estimator minimaxing MSE on these neighborhoods. We address the question to which degree this as. optimality carries over to finite sample size. We consider estimation of a one-dim. location parameter by means of M-estimators Sn with monotone influence curve ψ . Using Donoho and Huber (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Statistics

سال: 1992

ISSN: 0090-5364

DOI: 10.1214/aos/1176348782